cleated by At 1/8/2016

MEMORANDUM

TO: Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: December 28, 2015

FROM: R. Infante

FILE: JC10289

RE:

Data Validation

BMSMC, Building 5 Area, PR

SM04.00.06

Accutest Job Number: JC10289

SUMMARY

Full validation was performed on the data for several groundwater samples analyzed selected volatile organic compound by method SW846-8260C and selected alcohols by method SW846-8015C (DAI). The samples were collected at the BMSMC, Building 5 Area, Humacao, PR site on December 8 and 9, 2015 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery group (SDG) JC10289.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "USEPA Region 2, SOP HW-24, Validating Volatile Organic Compounds by GC/MS, SW-846 Method 8260B (August 2009-Revision 2), the USEPA National Functional Guidelines for Low Concentration Organic Data Review (August 2009-Revision 2), the USEPA National Functional Guidelines for Organic Data Review for Low Concentration Water (SOP HW-13, August 2009-Revision 3); (noted herein as the "primary guidance documents"). Also, QC criteria from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update IV, December 1998)," are utilized. The guidelines were modified to accommodate the non-CLP methodology. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data are valid as reported and may be used for decision making purposes.

SAMPLES

FIELD SAMPLE ID	LABORATORY ID	ANALYSIS
G-1R(3)	JC10289-1	VOCs, Alcohols
UP-1	JC10289-2	VOCs, Alcohols
S-31R(2)	JC10289-3	VOCs, Alcohols
S-33	JC10289-4	VOCs, Alcohols
S-33 MSD	JC10289-4D	VOCs, Alcohols
S-33 MS	JC10289-4S	VOCs, Alcohols
S-32	JC10289-5	VOCs, Alcohols
S-31R(2)D	JC10289-6	VOCs, Alcohols
A-1R(4)	JC10289-7	VOCs, Alcohols
A-2R(2)	JC10289-8	VOCs, Alcohols
TB120915	JC10289-9	VOCs, Alcohols

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Surrogate spike recovery
- o Matrix spike/matrix spike duplicate (MS/MSD) results
- o Internal standard performance
- Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

The cooler temperatures were within the QC acceptance criteria of $4^{\circ}C \pm 2^{\circ}C$.

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

<u>VOCs</u>

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Alcohols

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks for VOCs and alcohols.

No target analyte (VOCs and Alcohols) detected in the trip blanks. No field/equipment analyzed with this data package for Alcohols and VOCs.

Surrogate Spike Recovery

The surrogate recoveries were within the laboratory QC acceptance limits in all samples analyzed.

MS/MSD

VOCs

Matrix spike was performed on samples JC10289-4MS/-4MSD and JC10397-2MS. Recoveries for MS/MSD and RPD were within laboratory control limits.

Alcohols

Matrix spike was performed on samples JC10289-4MS/-4MSD and JC10289-6MS/-6MSD. Recoveries for MS/MSD and RPD were within laboratory control limits

Internal Standard Performance

VOCs

Samples were spiked with the method specified internal standard. Internal standard performance met the QC acceptance criteria in all sample analyses.

Field/Laboratory Duplicates Results

Field duplicates were analyzed as part of this data set for VOCs and Alcohols. Sample JC10397-1was analyzed in duplicate for VOCs. RPD results were within laboratory/recommended control limits.

LCS/LCSD Results

VOCs

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Alcohols

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Quantitation Limits and Sample Results

Dilutions were required for several VOCs samples with this data set due to analyte concentration outside the calibration range.

Calculations were spot checked.

Certification

The following samples JC10289-1; JC10289-2; JC10289-3; JC10289-4; JC10289-4D; JC10289-4S; JC10289-5; JC10289-6; JC10289-7; JC10289-8; and JC10289-9 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid.

Rafael Infante

Chemist License 1888

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

G-1R(3) JC10289-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/15

Date Received: 12/10/15

Percent Solids: n/a

File ID DF Analyzed By Run #1 2D150939.D 100 12/11/15 AM Run #2 2D150932.D 1000 12/11/15 AM	Prep Date	Prep Batch	Analytical Batch
	n/a	n/a	V2D6342
	n/a	n/a	V2D6342

		Pur	ge	Volume
Run #	#1	5.0	mI	
Run #	¥2	5.0	m1	

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND 25300 ^a ND 109 79400 ^a	1000 50 1000 500 100 100	330 24 270 100 16 170	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 98% 99% 97%	98% 97% 99% 99%	73-1 84-1	20% 22% 19% 17%	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: G-1R(3)
Lab Sample ID: JC10289-1

Matrix: Method:

Project:

CAS No.

111-27-3

111-27-3

AQ - Ground Water SW846-8015C (DAI)

Surrogate Recoveries

Hexanol

Hexanol

SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/08/15
Date Received: 12/10/15

Percent Solids: n/a

Run #1 Run #2	File ID GH102723.D	DF 1	Analyzod 12/14/15	By XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GGH5112
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alcoho Methanol	ol	ND ND	100 200	25 45	ug/l ug/l		

Run#2

Limits

48-150%

48-150%

Run#1

99%

107%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: UP-1

JC10289-2

Lab Sample ID: Matrix:

AQ - Ground Water

Method:

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/15

Date Received: 12/10/15

Percent Solids: n/a

Ву File ID DF Analyzed Prep Date Prep Batch **Analytical Batch** Run #1 2D150933.D 1 12/11/15 **AM** V2D6342 n/a n/a

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND 8.3 ND ND 2.2	10 0.50 1.0 5.0 1.0	3.3 0.24 0.27 1.0 0.16 0.17	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	98% 98% 100% 98%		76-12 73-12 84-12 78-12	22% 19%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: UP-1

Lab Sample ID: JC10289-2

Matrix: Method: AQ - Ground Water

Project:

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/08/15 Date Received: 12/10/15

Percent Solids: n/a

			· ·					
Run #1 Run #2	File ID GH102722.D	DF 1	Analyzed 12/14/15	By XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GGH5112
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alco Methanol	ohol	ND ND	100 200	25 45	ug/l ug/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
111-27-3 111-27-3	Hexanol Hexanol		98% 101%			50% 50%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

AM

Page 1 of 1

Client Sample ID: S-31R(2) Lab Sample ID: JC10289-3

Matrix: Method: AQ - Ground Water SW846 8260C

Date Sampled: 12/09/15 Date Received: 12/10/15

Project:

Percent Solids: n/a

BMSMC, Building 5 Area, PR

Run #1 Run #2 DF 20

Analyzed 12/11/15

Prep Date n/a

Prep Batch n/a

Analytical Batch V2D6342

Purge Volume

Run #1

5.0 mI

File ID

Run #2

2D150935.D

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND 2470 ND ND 467	200 10 20 100 20 20	66 4.7 5.4 20 3.2 3.3	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	= Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 98% 100% 99%		76-12 73-12 84-1 78-1	22% 19%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: S-31R(2) Lab Sample ID: JC10289-3

AQ - Ground Water

SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: 12/09/15 Date Received: 12/10/15

Percent Solids: n/a

Run #1 Run #2	File ID GH102721.D	DF 1	Analyzed 12/14/15	By XPL	Prep Do	ate	Prep Batch n/a	Analytical Batch GGH5112
CAS No.	Compound		Result	RL	MDL	Units	Q	

67-63-0	Isopropyl Alcohol	ND	100	25 ug/l
67-56-1	Methanol	ND	200	45 ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
111-27-3	Hexanol	87%		48-150%
111-27-3	Hexanol	99%		48-150%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

AM

n/a

Analyzed

12/11/15

Page 1 of 1

Client Sample ID:

Lab Sample ID: JC10289-4

File ID

2D150926.D

Matrix:

AQ - Ground Water

DF

1

SW846 8260C

Method: Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15

n/a

Date Received: 12/10/15

Percent Solids: n/a

Prep Date Prep Batch **Analytical Batch**

V2D6342

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND 1.9 ND ND 6.2	10 0.50 1.0 5.0 1.0	3.3 0.24 0.27 1.0 0.16 0.17	ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 98% 100% 99%		76-12 73-12 84-11 78-11	22% 19%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-33

Lab Sample ID: JC10289-4

Matrix: Method:

Project:

AQ - Ground Water

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15

Date Received: 12/10/15

Percent Solids: n/a

File ID DF Analyzed By Run #1 GH102718.D 1 12/14/15 XPL Run #2	Prep Date	Prep Batch	Analytical Batch
	n/a	n/a	GGH5112

CAS No.	Compound	Result	RL	MDL	Units
67-63-0 67-56-1	Isopropyl Alcohol Methanol	ND ND	100 200	25 45	ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
111-27-3 111-27-3	Hexanol	87%		48-15	50%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID: JC10289-5

Matrix: Method: AQ - Ground Water

SW846 8260C

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15

Date Received: 12/10/15

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 2D150936.D 250 12/11/15 **AM** n/a n/a V2D6342

Run #2

Purge Volume

Run #1 Run #2

5.0 ml

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND 39800 ND 70.1 66900	2500 130 250 1300 250 250	830 59 67 250 41	ug/l ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 97% 99% 97%	76-120% 73-122% 84-119% 78-117%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID: JC10289-5

Hexanol

Matrix:

AQ - Ground Water

Method: Project:

111-27-3

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15

Date Received: 12/10/15 Percent Solids: n/a

 		 -

Run #1 Run #2	File ID D GH102724.D 1	F Analyzed 12/14/15	By XPL	Prep Date n/a		Prep Batch n/a	Analytical Batch GGH5112
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alcohol Methanol	ND ND	100 200	25 45	ug/l ug/l		
CAS No.	Surrogate Recover	ries Run#1	Run# 2	Lim	its		
111-27-3	Hexanol	9096		48-1	50%		

48-150%

100%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: S-31R(2)D Lab Sample ID: JC10289-6

Matrix: AQ - Ground Water Method:

SW846 8260C BMSMC, Building 5 Area, PR Date Sampled: 12/09/15 Date Received: 12/10/15

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2D150992.D	10	12/14/15	AM	n/a	n/a	V2D6345
Run #2	2D150937.D	25	12/11/15	AM	n/a	n/a	V2D6342

Purge Volume Run #1 5.0 ml Run #2 5.0 ml

VOA Special List

CAS No.	Compound.	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	100	33	ug/l	
71-43-2	Benzene	ND	5.0	2.4	ug/l	
100-41-4	Ethylbenzene	2430 ^a	25	6.7	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	50	10	ug/l	
108-88-3	Toluene	3.0	10	1.6	ug/l	J
1330-20-7	Xylene (total)	484	10	1.7	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	102%	99%	76-1	20%	
17060-07-0	1,2-Dichloroethane-D4	102%	98%	73-1	22%	
2037-26-5	Toluene-D8	99%	99%	84-1	19%	
460-00-4	4-Bromofluorobenzene	99%	98%	78-1	17%	

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-31R(2)D Lab Sample ID:

JC10289-6

AQ - Ground Water

Matrix: Method:

SW846-8015C (DAI)

Project:

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15

Date Received: 12/10/15

Percent Solids: n/a

Run #1 Run #2	File ID GH102744.D		Analyzed 12/15/15	By XPL	Prep Date n/a		Prep Batch n/a	Analytical Batch GGH5114
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alcol Methanol	hol	ND ND	100 200	25 45	ug/l ug/l		
CAS No.	Surrogate Reco	overies	Run#1	Run# 2	Lim	its		
111-27-3 111-27-3	Hexanol Hexanol		96% 96%			50% 50%		

Report of Analysis

Ву

AM

Page 1 of 1

Client Sample ID: A-1R(4) Lab Sample ID:

JC10289-7 AQ - Ground Water

DF

5

Date Sampled: 12/09/15

Date Received: 12/10/15

Matrix: Method:

SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Run #1 Run #2 File ID 2D150938.D Analyzed 12/11/15

Prep Date n/a

Prep Batch n/a

Analytical Batch V2D6342

Purge Volume

Run #1

Run #2

5.0 ml

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2 100-41-4 108-10-1	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK)	ND 3.1 351 45.3	50 2.5 5.0 25	17 1.2 1.3 5.1	ug/l ug/l ug/l	
108-88-3 1330-20-7	Toluene Xylene (total)	5.6 1320	5.0 5.0	0.81 0.83	ug/l ug/l ug/l	
CAS No. 1868-53-7	Surrogate Recoveries Dibromofluoromethane	Run# 1	Run# 2	Limi		
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 99% 100% 97%	76-120% 73-122% 84-119% 78-117%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: A-1R(4) Lab Sample ID: JC10289-7

Matrix: AQ - Ground Water Method: SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15 Date Received: 12/10/15

Percent Solids: n/a

Run #1 Run #2	File ID GH102747.D	DF 1	Analyzed 12/15/15	By XPL	Prep D n/a	ate	Prep Batch n/a	Analytical Batch GGH5114
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alcol Methanol	hol	ND ND	100 200	25 45	ug/l ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
111-27-3 111-27-3	Hexanol Hexanol		96% 106%			.50% .50%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: A-2R(2) Lab Sample ID:

Matrix: Method: JC10289-8

AQ - Ground Water SW846 8260C

Date Sampled: 12/09/15 Date Received: 12/10/15

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

File ID 2D150934.D Run #1

DF 1

Analyzod By 12/11/15 **AM** Prep Date n/a

Prep Batch n/a

Analytical Batch V2D6342

Run #2

Purge Volume 5.0 ml

Run #1 Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1 71-43-2	Acetone Benzene	ND ND	10 0.50	3.3 0.24	ug/l ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l	
108-10-1 108-88-3	4-Methyl-2-pentanone(MIBK) Toluene	ND ND	5.0 1.0	1.0 0.16	ug/l ug/l	
1330-20-7	Xylene (total)	0.49	1.0	0.17	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

	_		
1868-53-7	Dibromofluoromethane	98%	76-120%
17060-07-0	1,2-Dichloroethane-D4	98%	73-122%
2037-26-5	Tolucne-D8	99%	84-119%
460-00-4	4-Bromofluorobenzene	101%	78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: A-2R(2) Lab Sample ID: JC10289-8

Matrix: AQ - Ground Water Method: SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15 Date Received: 12/10/15

Percent Solids: n/a

Run #1 Run #2	File ID GH102748.D			ate	Prep Batch n/a	Analytical Batch GGH5114		
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alco Methanol	hol	ND ND	100 200	25 45	ug/l ug/l		
CAS No.	Surrogate Rec	overies	Run#1	Run# 2	Lim	its		
111-27-3 111-27-3	Hexanol Hexanol		95% 102%			.50% .50%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: TB120915 Lab Sample ID: JC10289-9

Matrix: Method:

Project:

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, PR

Date Sampled: 12/09/15

Date Received: 12/10/15

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 2D150991.D 1 12/14/15 AM n/a n/a V2D6345 Run #2

Purge Volume 5.0 ml

Run #1 Run #2

VOA Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	0.50	0.24	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.0	ug/l	
108-88-3	Toluene	ND	1.0	0.16	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.17	ug/I	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	101%		76-17	20%	
17060-07-0	1,2-Dichloroethane-D4	101%		73-12	22%	
2037-26-5	Toluene-D8	98%		84-11	19%	
460-00-4	4-Bromofluorobenzene	100%		78-13	17%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Accutest Laboratories

Report of Analysis

Client Sample ID: TB120915 Lab Sample ID: JC10289-9

Matrix: AQ - Trip Blank Water Method: SW846-8015C (DAI)

Project: BMSMC, Building 5 Area, PR Date Sampled: 12/09/15 Date Received: 12/10/15

Percent Solids: n/a

	****		***					
Run #1 Run #2	File ID GH102860.D	DF 1	Analyzed 12/22/15	By XPL	Prep D n/a	ato	Prep Batch n/a	Analytical Batch GGH5122
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-63-0 67-56-1	Isopropyl Alco Methanol	ohol	ND ND	100 200	25 45	ug/l ug/l		
CAS No.	Surrogate Rec	coveries	Run#1	Run# 2	Lim	its		
111-27-3 111-27-3	Hexanol Hexanol		80% 84%			.50% .50%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC10289

AMANYWP Anderson, Mulholland & Associates

Account: Project:

BMSMC, Building 5 Area, PR

Sample JC10289-4MS JC10289-4MSD JC10289-4	File ID 2D150930.D 2D150931.D 2D150926.D	DF 1 1	Analyzed 12/11/15 12/11/15 12/11/15	By AM AM AM	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch V2D6342 V2D6342 V2D6342
--	---	--------------	--	----------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846 8260C

JC10289-1, JC10289-2, JC10289-3, JC10289-4, JC10289-5, JC10289-6, JC10289-7, JC10289-8

CAS No.	Compound	JC10289-4 ug/l Q	Spike ug/I	MS ug/l	M8 %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1 71-43-2 100-41-4 108-10-1 108-88-3 1330-20-7	Acetone Benzene Ethylbenzene 4-Methyl-2-pentanone(MIBK) Toluene Xylene (total)	ND ND 1.9 ND ND 6.2	50 50 50 50 50 50 150	50.0 45.2 47.4 54.5 47.3 146	100 90 91 109 95 93	50 50 50 50 50 50	51.1 45.6 47.4 54.0 47.1 147	102 91 91 108 94	2 1 0 1 0	33-158/19 43-138/12 38-139/12 68-139/12 51-136/13 46-137/12
CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	MS 97% 97% 100%	MSD 100% 98% 100% 100%	JC 999 989 100 999	%)%	76-1209 73-1229 84-1199 78-1179	6			

^{* =} Outside of Control Limits.

	٠	ï		
				×
	٠	۰	-	
r				
ľ				

2000	
10.00	

		,	<i>ta</i>		T T A 173		_	OT :	.03	-	DI										
		į. L	175 175	Fr	HAII esh Pond	s Corpor	ate 1	/ Elling	pe, Bo	aildi				F	Acculant .	Job #;		To	102	89	
2235 Route 130, Dayton, NJ 08810 732-329-0200 FAX: 732-329-3499/									3480			ļ	Accutest (Quate #:			1	9 1			
Client Information Facility Information								Analyti	cal Info	metion :		1									
	rson Mutholland & As	sociates		lerson Mult	olland a	nd Asse	clat	as in	_								1	T			Ι
	Westchester Avenue		Project Nac									10									'
Address Purchas	le NY	10577	Location						_		€			ı				1			
City	Sinte	21p	Project/PO	Ø:						_				- 1				1			
Тепу Та			, · -		BM3:	Buildin	g 6	Ares	1		=				- 1		1	1		!	
Send Report	914-251-0400		FAX #:	914-34	1-1286						VOCs (Special List				- 1				1	1]
FIRSTIN D.	314531-0400		Cottection		1-1200		1 6		vend		<u> </u>						i	1		l .	
			Conection	Sampled		# of				احتنانا	ő				ı		1	1	Į.		
	7 / Point of Collection	Date	Time	By	Matro	bottes	호	ē	3 6	5	_ >						<u> </u>				
	·1 R(3)	12/8/13		NMR	GW	6	X		┸	Ш	ж	_ !									VIZL
	P-1	12/8/1	1.4	NMR	GW	6	x	Ш	\perp	Ш	×	2									U120
	31R(2)*	D1511	1030	NMR	GW	28%	X		\perp		×	3					1				
	33		1155	NMR	GW	6	х		\perp		×	Ч									
	-32	1	1348	NMR	GW	6	×		\perp		x_	. 5									
2	31R (4)D		1035	NMR	GW	6	X				ж	6					<u> </u>				
5-	33 MS		11.28	NMR	GW	6	×			П	×	\				- 65					
S	33 MSD		1203	NMR	CW	6	X				×)								1 01	<i>r</i>
A	-IR (4)		1627	NMR	GW	6	x				ж	7					NITIAL	SESSIVE	МТ	7 00	
A	-ZR(2)*		1745	NMR	GW	8.	X		\mathbf{I}		ж	8				Ti-	ABEL V	ERIFICA	ION .	K	
-1	B12015	12/9/1	1775	NM/L	W	-2	X					9									
	Turneround Information					Data	Delh	erab	le Inf	11111	rtion				Commer	ts / Fler	narks				
X 21 Day	r Standard	Approve	d By:	NJ Red	luced			Con		det ".	A"				1	80	12219	53540	- 16		
14 130	,			X NJ Full	ı		П	Con		tet "	8"		Federal E Lab Trip :	xpres	s ID#_						
7 7 Davi	7 Conve EMERICENCY FULL CLP ASP Coloroon						ory (В		VOC's sa							Ided by	the			
Other								700			lab. Anah										
RUSH TAT in for FAX data Other (Specify)										ethylbeno					, IPA an	d meth	nnol).				
united previously approved.									1 * 0	IC U	va.	liα	SX								
-1	Sample	e Custody :	nuet be docum	ented below Reserved By:	each time	eemple	e chi	nge			, including	courter o	lettvary.								
11/1/	Ja M Liver	12/9/1	s/1758	1	FOST	f			2	-		FOR	× [12,	10/16	0	710	2		Z	<u> </u>	
1-//	phy sample:	Clobo Flore:	-,	Received By:			• •		Pile 1		and Sy:		0=	e Tome:		11.0	-	yi .			
3 /	l by Kampler:	Dalo Tirre:		3 Received By:					4				Tanarrad where				4 Unite:				
5	-,			5						-	174	-	~ ·				Un Note			3.	100
									-		- 1		ď				7				

JC10289: Chain of Custody Page 1 of 3

	Project Number:_	JC10289
	Date:	12/08-09/2015
REVIEW OF VOLATILE ORGATINE OF COLORDATION OF The following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the following HW-24, Standard Operating Procedure for the Validation of 8260B (August, 2009-Revision 2), the USEPA Nation Concentration Organic Data Review (SOW SOM01.2 SOP H National Functional Guidelines for Organic Data Review for Locational Functional Functi	ANIC PACKAGE vere created to deli- ofessional judgment ne sample results we order of precedence Organic Data Acquir al Functional Guid W-33, August 2009 - ow Concentration Wa or Evaluating Solid V cally for Methods 800 ew worksheets are f	neate required validation to make more informed ere assessed according to the USEPA Region 2, SOP and using SW-846 Method delines for Low/Medium - Revision 2), the USEPA eter (SOP HW-13, August, Waste, Physical/Chemical 10/8260B are utilized. The from the primary guidance
The hardcopied (laboratory name) _Accutest		
Lab. Project/SDG No.:JC10289 No. of Samples:11	_ Sample matrix:	Groundwater
Trip blank No.:JC10289-9		·
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate Overall Comments:_Selected_VOC's_by_SW846-82600	X Field DuX CalibratX CompouX CompouX Quantita	ions und Identifications und Quantitation ation Limits
——————————————————————————————————————	'	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Date: 2/26/2015		

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		<u> </u>
30.00		
		<u> </u>
		10
		No.
· · · · · · · · · · · · · · · · · · ·		
		NAMES OF THE PARTY

All criteria were met _	X_
Criteria were not met	
and/or see below	-

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
			_	
	Ali samples anaiyzed w	ithin the recommended	l method	holding time

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.8 °C - OK

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R),

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Critera	All criteria were metX a were not met see below
GC/MS TUNING			
The assessment of standard tuning Quarter of the standard tuni	_	determine if the sample instrum	entation is within the
_XThe BFB ;	performance results were	reviewed and found to be within the	ne specified criteria.
_X BFB tunin	g was performed for ever	y 12 hours of sample analysis.	
lf no, use profess qualified or rejecte		nine whether the associated data	should be accepted,
List	the	samples	affected:
 .			

If mass calibration is in error, all associated data are rejected.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	12/10/15	
Dates of continuing calibration:	12/11/15;_12/14/15	
Instrument ID numbers:	GCMS2D	
Matrix/Level:Aqu	reous/low	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
	Initia	l and c	ontinuing calibration med	ets method performance c	riteria.
					-

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

Laboratory blanks

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
	· · · · · · · · · · · · · · · · · · ·		fic_criteria	
				CONCENTRATION
				_of_this_data_packageNo_
			- 27 - 30 - 10 - 10 - 10 - 10 - 10 - 10 - 10	1.01 - (-0.01-1-10-10-20-10-20-10-10-10-20-10-20-10-20-10-20-10-20-10-20-10-20-10-20-10-20-10-20-10-20-20-20-2

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					- Andrewski - Andr
				-2550	-
			175		
				_	
CHO -					

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID		ACTION			
•	1,2-DCA	DBFM	TOL-d8	BFB	
_All_surrogate_reco	veries_within	_laboratory_co	ntrol_limits		
		25.836.761.6			
	7 0				10020 - 500
QC Limits* (Aqueous					
LL_to_UL QC Limits* (Solid-Lo		to_	to	to	
LL_to_UL QC Limits* (Solid-Me	to	to	to	to	
LL_to_UL	•	to	to	to	_
1,2-DCA = 1,2-Dichk DBFM = Dibromofluc		14		3 = Toluene-d8 Bromofluorober	nzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC10289-4MS/-4MSD Sample ID:JC10397-2MS			Matrix/Level:GROUNDWATER Matrix/Level:GROUNDWATER			
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
	2	10, 512	8 80 80		
				A STATE OF THE PARTY OF THE PAR	
	- Aller				
September 1					
				 -	_

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recoverie	s(blank_spike	e)_within_laboratory_control	l_limits	
Min - Landa-				
			2.44.	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	- J	Accept
Nondetects results	R sults are qualified f	Accept Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

All criteria were met _X
Criteria were not met
and/or see below

IX. FIELD DUPLICATE PRECISION

Sample IDs:	JC10289-3/JC10289-6	Matrix:_Groundwater
-------------	---------------------	---------------------

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
	ļ					
	L			1	<u> </u>	
RPD within laboratory and generally acceptable control limits.						

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

IX.

		All criteria were metX Criteria were not met and/or see below
FIELD DUPLI	CATE PRECISION	
Sample IDs:	JC10289-3/JC10289-6	Matrix:_Groundwater

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD ± 30% for aqueous samples, RPD ± 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
				ļ	
	DDF	within laboratory as	ad gonorally accontable	oontol li	mita
	KFL	i willian laboratory at	nd generally acceptable	CONBOLI	mis.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

		All criteria were metX Criteria were not met and/or see below
IX.	LABORATORY DUPLICATE PRECISION	
	Sample IDs:JC10289-9	Matrix:_Groundwater

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
	-			<u> </u>	
	RPD	within laboratory ar	nd generally acceptable	control l	imits.
	-				
				 	<u> </u>
	<u> </u>			1	-

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

DATE

All criteria were met _X
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

CAMBLE ID IC OUT

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	15 001	10 AREA	RANGE	ACTION
_Internal_st	andard_area_within	_laboratory_cor	ntrol_limits		
				57-81	in 1998/1 14 15
1.1 SECT - 2					
			- 100		
421975					
Actions:					-

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not mel
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC10289-1

Ethylbenzene

RF = 1.691

[] = (409440)(50)/(478953)(1.691)

= 25.28 ppb OK

	Project Number:J(
	Date:12/08-09	/2015
REVIEW OF VOLATILE ORGA The following guidelines for evaluating volatile organics we actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the following of HW-24, Standard Operating Procedure for the Validation of O8260B (August, 2009-Revision 2), the USEPA National Concentration Organic Data Review (SOW SOM01.2 SOP HW National Functional Guidelines for Organic Data Review for Low 2009-Revision 3). Also, QC criteria from "Test Methods for Methods SW-846 (Final Update III, December 1996)," specificate QC criteria and data validation actions listed on the data review document, unless otherwise noted. The hardcopied (laboratory name) _Accutest	ere created to delineate of sessional judgment to research sample results were as order of precedence: US organic Data Acquired us I Functional Guideline W-33, August 2009 – Revolv Concentration Water (Sevaluating Solid Waster) worksheets are from the data package	nake more informed assessed according to SEPA Region 2, SOP sing SW-846 Method is for Low/Medium rision 2), the USEPA SOP HW-13, August, a, Physical/Chemical SOB are utilized. The he primary guidance received has been
Lab. Project/SDG No.:JC10289 No. of Samples:11	Sample matrix:	Groundwater
Trip blank No.:JC10289-9		
X Holding Times	X Laboratory C X Field Duplica X Calibrations X Compound C X Compound C X Quantitation	ites dentifications Quantitation
Overall Comments:_Selected_alcohols_(Ise 846_8015C_(DAI)	opropyl_alcohol_and_l	Methanol)_by_SW-
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated hondetect Reviewer: Date: 12/26/2015		

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
- 1		
		
N. C.		
- 1		
-		
		<u> </u>
<u> </u>		
	702	8-31 W-18 N-
		- 10
		W.
		W.
<u> </u>		
		-
		100 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	 Ali samples analyzed w	 vithin the recommended	l method	holding time

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 3.8°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R). If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ) If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R). If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		•	
List	the	samples	affected:
If no, use profession qualified or rejected		ine whether the associated data	should be accepted,
N/A_ BFB tuning	was performed for every	12 hours of sample analysis.	
N/A_ The BFB p	erformance results were	reviewed and found to be within the	ne specified criteria.
The assessment o standard tuning QC		determine if the sample instrum	entation is within the
GC/MS TUNING			
		Criter	All criteria were metN/A_ ia were not met see below

If mass calibration is in error, all associated data are rejected.

All criteria were met _	х_	
Criteria were not met		
and/or see below	200	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	05/20/15	
Dates of continuing calibration:	_12/14/15;_12/15/15;_12/22/15_	
Instrument ID number:	GCGH	
Matrix/Level:	Aqueous/low	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
		Initial an	d continuing calibration	meet method specific	criteria

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r > 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			fic_criteria	
	-			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
			ankNo_equipment/fie	ld_blanks_analyzed
		- 252		

All criteria were met _X	
Criteria were not mel	
and/or see below	

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					100 8
	· · · · · · · · · · · · · · · · · · ·		-		7

All criteria were metX	
Criteria were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID		SURROGATE COMPOUND			ACTION	
H	lexanol	DBFM	TOL-d8	BFB		
_All_surrogate_recov		•				
			W. T 2 - 14			
QC Limits* (Aqueous						
LL_to_UL QC Limits* (Solid-Lov	, <u>_4</u> 6_[0_15U w)			to	•	
LL_to_UL QC Limits* (Solid-Me	to	to	to	to		
LL_to_UL	to	to	to	to		
1,2-DCA = 1,2-Dichlo DBFM = Dibromofluo				Toluene-d8 omofluorobenzei	ne	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC10289-4MS/-4MSD Sample ID:JC10289-6MS/-6MSD					Groundwater _Groundwater	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
						×

Note: MS/MSD recoveries and RPD within laboratory control limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
					and the second
			· · · · · · · · · · · · · · · · · · ·		
121 2	tor s		S. Carlotte		
					Secretaria de Secretaria d
SCHOOL SECTION					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	- LCS ID	COMPOUND	% R	QC LIMIT
Recove	eries_within_labor	atory_control_limits		Υ

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

if two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICAT	TE PRECISION	
	Sample IDs: _JC10289-3/JC1	0289-6 Matrix:	Groundwater

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
	222					
	ערא	within laboratory ar	nd generally acceptable	control I	imits.	
				1		

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met	_N/A
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE ACTION RANGE
		10.75.	1 36555 37	
			0 1	
		·		·

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	j	J	J
Nondetected results	R	UJ	ACCEPT

If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _X
Critena were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC10289-1

Hexanol

RF = 119.5

[] = (637600)/(119.5)

= 5336 ppb OK

All criteria were met _X
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

Б.	Danis at Oallida			
B.	Percent Solids			
	Lint normalne subjek k	our d FO W collida		
	List samples which h	ave ≤ 50 % solids		
				100
	0.0			
Antina	•			
Action		::	doikiiki- (I) and	1 /1 1 N
	if the % solids of a so	ili sample is Tu-50%, estima	te positive results (J) and nond	ietects (UJ)
	If the 9/ polide of a se	sil aamala ia < 100/ aatimat	a manifica results (IV and reject	
		ani sample is < 10%, esumat	e positive results (J) and reject	nondetects
	(R)			